A chemical reaction is run in which 796 Joules of heat are generated and 235 Joules of work are done on the system. Calculate the change in the internal energy of the chemical system. Joules

Answers

Answer 1

The internal energy change of the reaction is -561J, and w for the species is +235J according to the provided statement.

What does the term "reaction" in chemistry mean?

In a chemical reaction, one or more substances—also known as reactants—are changed into one or more additional compounds are known as products. Chemical elements or chemical compounds make up substances.

Using the basic principle of thermodynamics,

ΔE = q + w

Q is -ve when heat is produced.

Thus,

q = - 495 J

ΔE = -31J

These variables are substituted in the equation above to yield,

- 31 J = - 495 J + w

or, w = +464 J

Using the basic principle of thermodynamics,

ΔE = q + w

Q is -ve when heat is produced.

Thus,

q = -796 J

The system has been worked on, thus w is positive.

Thus,

w = +235 J

These variables are substituted in the equation above to yield,

ΔE = + 235 J - 796 J

ΔE = -561 J

To know more about Reaction visit:

brainly.com/question/25769000

#SPJ4

The complete question is-

A chemical reaction is run in which 495 Joules of heat are generated and the internal energy changes by -31 Joules.

Calculate 'w' for the system in (Joules)

A chemical reaction is run in which 796 Joules of heat are generated and 235 Joules of work are done on the system.

Calculate the change in the internal energy of the chemical system.

ΔE in Joules


Related Questions

Write a balanced equation for the formation of co2 g fom C and O2. Calcuilate the enthalpy change for this reaction.

Answers

The enthalpy change for the formation of CO2(g) from C(s) and O2(g) is -393.5 kJ/mol.

The balanced equation for the formation of CO2 gas from C and O2 is:
C + O2 → CO2
The enthalpy change for the combustion of graphite (C) to form carbon dioxide (CO2):
C + O2 → CO2     ΔH = -393.5 kJ/mol
The enthalpy change for the formation of O2 from its elements:
1/2 O2(g) → O(g)     ΔH = 249 kJ/mol
O(g) + O(g) → O2(g)     ΔH = +495.0 kJ/mol
1/2 O2(g) → O(g) + O(g)     ΔH = 746.0 kJ/mol
C + 1/2 O2 → CO     ΔH = 110.5 kJ/mol
CO + 1/2 O2 → CO2     ΔH = -283.0 kJ/mol
C + O2 → CO2     ΔH = ΔHf(CO2) - [ΔHf(CO) + ΔHf(O2)]
              = (-393.5 kJ/mol) - [(-110.5 kJ/mol) + (-283.0 kJ/mol)]
              = -393.5 kJ/mol + 393.5 kJ/mol
              = 0 kJ/mol
The reaction is neither exothermic nor endothermic and there is no net release or absorption of heat energy during the reaction.
The formation of CO2 gas from C and O2, you need to combine one atom of carbon (C) with two atoms of oxygen (O2). The balanced equation is:
C(s) + O2(g) → CO2(g)
The standard enthalpies of formation for elements in their standard states, such as C(s) and O2(g), are considered to be zero.
Using the equation ΔH = ΔH(products) - ΔH(reactants), you can calculate the enthalpy change:
ΔH = (-393.5 kJ/mol) - (0 kJ/mol) = -393.5 kJ/mol

To know more about enthalpy visit:-

https://brainly.com/question/16720480

#SPJ11

Classify the chemical equations as being balanced or not balanced. A. 2CO 2NO → 2CO2 N2 B. 6CO2 6H2O → C6H12O6 O2 C. H2CO3 → H2O CO2 D. 2Cu O2 → CuO Group of answer choices A [ Choose ] B [ Choose ] C [ Choose ] D [ Choose ].

Answers

All of the given chemical equations, A, B, C, and D, are balanced. The chemical equation 2CO + 2NO → 2CO2 + N2 is balanced. The number of atoms of each element is the same on both sides of the equation.

B. The chemical equation 6CO2 + 6H2O → C6H12O6 + O2 is balanced. The number of atoms of each element is the same on both sides of the equation.

C. The chemical equation H2CO3 → H2O + CO2 is balanced. The number of atoms of each element is the same on both sides of the equation.

D. The chemical equation 2Cu + O2 → 2CuO is balanced. The number of atoms of each element is the same on both sides of the equation.

Therefore, all of the given chemical equations, A, B, C, and D, are balanced.

To learn more about chemical equations click here:

brainly.com/question/26603502

#SPJ11

41. Your laboratory has a 6. 0 M solution of nitric acid,


but you need 2. 0 M nitric acid. What volume of the


6. 0 M nitric acid solution do you need to prepare


85 mL of 2. 0 M nitric acid?



Please show work

Answers

To prepare 85 mL of 2.0 M nitric acid solution, you need 28.33 mL of 6.0 M nitric acid solution.

The equation used to solve this problem is:

M1V1 = M2V2

where M1 is the initial concentration, V1 is the initial volume, M2 is the final concentration, and V2 is the final volume.

Rearranging the equation to solve for V1, we get:

V1 = (M2V2)/M1

Substituting the values given in the problem, we get:

V1 = (2.0 M x 85 mL)/(6.0 M)

V1 = 28.33 mL

Therefore, you need 28.33 mL of 6.0 M nitric acid solution to prepare 85 mL of 2.0 M nitric acid solution.

Learn more about nitric acid solution here.

https://brainly.com/questions/14480875

#SPJ11

9-36 Repeat Prob. 9-34 using constant specific heats at room temperature. 9-34 An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C, and 750 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) pressure and temperature at the end of the heat-addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle. Answers: (a) the 3898 kPa, 1539 K, (b) 392 kJ/kg, (c) 52.3 percent, (d) 495 kPa

Answers

Using constant specific heat at room temperature, the pressure and temperature at the end of the heat-addition process are 3898 kPa and 1539 K, respectively. The network output is 392 kJ/kg, the thermal efficiency is 52.3 percent, and the mean effective pressure is 495 kPa.

For Prob. 9-34 using constant specific heats at room temperature, we assume that the specific heats of air are constant at their values at room temperature. From Table A-2, at 27°C, the specific heats of air are 1.005 kJ/kg-K for constant pressure and 0.718 kJ/kg-K for constant volume.

(a) To determine the pressure and temperature at the end of the heat-addition process, we use the first law of thermodynamics:
Q = mCv(T3 - T2)
where Q is the heat added, m is the mass of air, Cv is the specific heat at constant volume, and T2 and T3 are the temperatures at the beginning and end of the heat-addition process, respectively. Rearranging and substituting known values, we get:
T3 = T2 + Q/(mCv) = 27 + 750/(1.005*28.97) = 51.13°C

The compression ratio is 8, so the final pressure is:
P3 = 8P2 = 8(95) = 760 kPa

(b) The net work output of the cycle is given by:
Wnet = Q - mCv(T4 - T1)
where T1 and T4 are the temperatures at the beginning and end of the entire cycle, respectively. From the ideal gas law, we have:
P1V1/T1 = P2V2/T2 and P3V3/T3 = P4V4/T4

Since process 2-3 is constant-volume, V2 = V3 and P2/T2 = P3/T3. Similarly, since the process 4-1 is constant-volume, V4 = V1 and P4/T4 = P1/T1. Combining these equations and solving for T4, we get:
T4 = T3(P4/P3)^(γ-1/γ) = 1539 K
where γ = Cp/Cv is the ratio of specific heats. Substituting known values, we get:
T1 = T4(P1/P4)^(γ-1/γ) = 387.3 K

The volume at state 1 is V1 = mRT1/P1 = (28.97/0.287)*387.3/95 = 0.978 m3/kg. Similarly, the volume at state 4 is V4 = 0.978*8 = 7.824 m3/kg. Therefore, the work output per kg of air is:
W/kg = Q - mCv(T4 - T1) = 750 - 28.97*(0.718)*(1539 - 387.3) = 392 kJ/kg

(c) The thermal efficiency of the cycle is given by:
η = Wnet/Q = (Q - mCv(T4 - T1))/Q = 1 - (T4 - T1)/(T3 - T2) = 52.3 percent

(d) The mean effective pressure (MEP) of the cycle is defined as the average pressure during the power stroke, which is the process 4-1. The MEP can be calculated using:
MEP = Wnet/Vd = Wnet/(V3 - V2) = Wnet/(mRT3/P3 - mRT2/P2)

Substituting known values, we get:
MEP = 392/(28.97*0.287*(1539/8 - 27)/(760/8 - 95)) = 495 kPa

To know more about the Otto cycle visit:

https://brainly.com/question/12976213

#SPJ11

decide which of the following bonds is least polar on the basis of electronegativities of atoms: , , .

Answers

To determine which bond is least polar, we need to compare the electronegativities of the atoms involved. Electronegativity is the measure of an atom's ability to attract electrons towards itself in a covalent bond. The greater the difference in electronegativity between two atoms, the more polar the bond will be.

According to the Pauling scale of electronegativities, the electronegativity of oxygen is 3.44, nitrogen is 3.04, and carbon is 2.55. Therefore, the bond between carbon and nitrogen (C-N) will be the least polar because the difference in electronegativity between the two atoms is only 0.49. On the other hand, the bond between oxygen and nitrogen (O-N) will be the most polar because the difference in electronegativity is 0.4. The bond between carbon and oxygen (C-O) will be moderately polar because the electronegativity difference is 0.89.

In summary, the C-N bond is the least polar among the three bonds due to the least difference in electronegativities of the atoms. The bond polarity plays an important role in determining the physical and chemical properties of a compound. A polar bond will have a dipole moment, and it will tend to interact with other polar molecules or ions. In contrast, nonpolar bonds will interact with other nonpolar compounds. Hence, understanding bond polarity is crucial in predicting the behavior of a chemical compound.

To know more about electronegativities visit:

https://brainly.com/question/3393418

#SPJ11

Given the following electrochemical cell, calculate the potential for the cell in which the concentration of Ag+ is 0.0285 M, the pH of the H+ cell is 2.500, and the pressure for H2 is held constant at 1 atm. The temperature is held constant at 55°C

Answers

According to the question to calculate the potential of the cell, the potential of the cell is 0.7816 V at a temperature of 55°C.

The electrochemical cell given in the question can be represented as follows:
Ag(s) | Ag+(0.0285 M) || H+(pH = 2.500) | H2(1 atm)
To calculate the potential of the cell, we need to use the Nernst equation, which is given as:
Ecell = E°cell - (RT/nF)lnQ
Where E°cell is the standard cell potential, R is the gas constant, T is the temperature, n is the number of electrons transferred, F is the Faraday constant, and Q is the reaction quotient.
In this case, the reaction taking place in the cell can be written as:
Ag+(aq) + H2(g) → Ag(s) + H+(aq)
The balanced equation shows that two electrons are transferred during the reaction. The standard cell potential for this reaction can be found in a table of standard reduction potentials and is 0.799 V.
To calculate the reaction quotient Q, we need to use the concentrations of the species involved. The concentration of Ag+ is given as 0.0285 M, and the pH of the H+ cell is 2.500, which means that the concentration of H+ is 3.16 x 10^-3 M. The pressure of H2 is held constant at 1 atm. Therefore, Q can be calculated as:
Q = [Ag+][H+]/(PH2)
Q = (0.0285)(3.16 x 10^-3)/(1)
Q = 8.994 x 10^-5
Substituting the values in the Nernst equation, we get:
Ecell = 0.799 - (0.0257/2)ln(8.994 x 10^-5)
Ecell = 0.799 - 0.0174
Ecell = 0.7816 V
Therefore, the potential of the cell is 0.7816 V at a temperature of 55°C.

To know more about electrochemical cell visit :

https://brainly.com/question/31149864

#SPJ11

a sample of neon gas collected at a pressure of 274 mm hg and a temperature of 301 k has a mass of 27.8 grams. The volume of the sample is ....... L.

Answers

The volume of the sample of neon gas collected is 0.048 L.

The volume of the sample of neon gas collected at a pressure of 274 mm Hg and a temperature of 301 K, with a mass of 27.8 grams, can be calculated using the ideal gas law equation:

PV = nRT

Where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin.

First, we need to determine the number of moles of neon gas in the sample. We can use the formula:

n = m/M

Where m is the mass of the gas (27.8 g) and M is the molar mass of neon (20.18 g/mol).

n = 27.8 g / 20.18 g/mol = 1.38 mol

Next, we can plug in the values we know into the ideal gas law equation and solve for V:

V = nRT/P

V = (1.38 mol)(0.08206 L·atm/mol·K)(301 K) / (274 mmHg)(1 atm/760 mmHg)

V = 0.048 L

Therefore, the volume of the sample of neon gas collected is 0.048 L.

Know more about Ideal gas law equation here:

https://brainly.com/question/4147359

#SPJ11

methylamine, ch3nh2, has a kb = 4.40 x 10-4. 1st attempt see hintsee periodic table what is the ph of a 0.360 m solution of methylamine?

Answers

The pH of the 0.360 M solution of the methylamine solution is the 12.

The methylamine solution of chemical equation is as :

CH₃NH₂ + H₂O ==> CH₃NH₃⁺ + OH⁻

The expression for the kb is as :

Kb = [CH₃NH₃⁺ ]  [OH⁻] / [CH₃NH₂ ]

The value of kb for the methylamine =  4.38 x 10⁻⁴

4.38 x 10⁻⁴ = (x)(x) / 0.360 - x

x = 1.14 x 10⁻² M = [OH⁻]

The value of hydroxide ion,   [OH⁻] = 1.14 x 10⁻² M

The expression for the pOH is :

pOH = - log (OH⁻)

pOH = - log ( 1.14 x 10⁻²)

pOH = 1.94

pH = 14 - 1.94

pH = 12

The pH of the methylamine solution is 12 with the 0.360 M.

To learn more about pH here

https://brainly.com/question/2288405

#SPJ4

periodic trends, place the following bonds in order of decreasing ionic character. Using Sb-Cl P-Cl As-Cl A) As-Cl Sb-Cl P-Cl B) P-Cl As-Cl Sb-Cl C) Sb-Cl As-C1 P- Cl D) Sb-Cl P-Cl As- Cl E) Sb-Cl P-Cl As- Cl

Answers

The order of decreasing ionic character is As-Cl Sb-Cl P-Cl.

To determine the order of decreasing ionic character of the bonds Sb-Cl, P-Cl, and As-Cl, we need to look at the electronegativity difference between the two atoms in each bond. The greater the electronegativity difference, the more ionic the bond.

Sb is a metalloid and has an electronegativity of 2.05, Cl is a non-metal with an electronegativity of 3.16. The electronegativity difference between Sb and Cl is 1.11.

P is also a non-metal with an electronegativity of 2.19. The electronegativity difference between P and Cl is 0.97.

As is a metalloid with an electronegativity of 2.18. The electronegativity difference between As and Cl is 0.98.

Therefore, the bond with the most ionic character will be Sb-Cl, followed by As-Cl, and then P-Cl.

So the correct order is:

A) As-Cl > Sb-Cl > P-Cl

Therefore, option A is the correct answer.


to know more about ionic character

brainly.com/question/28906982

#SPJ11

tellurium-123 is a radioactive isotope occurring in natural tellurium. the decay constant is /s. what is the half-life in years?

Answers

The correct answ 2.67 x 10^6 years.

To determine the half-life of tellurium-123 (Te-123), we can use the following equation that relates the decay constant (λ) and the half-life (t1/2):

λ = ln(2) / t1/2

where ln(2) is the natural logarithm of 2, which is approximately 0.693.

We are given the decay constant of Te-123 as  /s. Substituting this value into the equation above, we get:

/s = 0.693 / t1/2

Solving for t1/2, we get:

t1/2 = 0.693 / ( /s)

t1/2 = 0.693 x (1 s/ )

t1/2 = 0.693 x (1/3.156 x 10^7) years  (converting seconds to years)

t1/2 = 2.67 x 10^6 years

Therefore, the half-life of tellurium-123 is approximately 2.67 x 10^6 years.

To know more about radioactive isotopes, refer here

https://brainly.com/question/1907960#

#SPJ11

1. if the esterification reactions were non-spontaneous (i.e. k<1, positive δg) would adding more acid catalyst allow the reaction to proceed?

Answers



The positive δg value indicates that the reaction is not spontaneous under standard conditions, meaning that the free energy of the products is higher than that of the reactants.

Therefore, additional energy input is required to drive the reaction forward. This can be achieved by increasing the temperature or by removing the product (ester) as it forms, as this will shift the equilibrium towards the product side according to Le Chatelier's principle. Alternatively, the reaction conditions can be modified to favor the formation of the ester by using an excess of one of the reactants, such as the alcohol or the acid, to shift the equilibrium towards the product side. However, this approach may also have limitations and may not be effective in all cases.

In summary, adding more acid catalyst alone may not be sufficient to drive the esterification reaction if it is non-spontaneous. The thermodynamic issue needs to be addressed by modifying the reaction conditions to favor the formation of the ester.
Read more about thermodynamic here:https://brainly.com/question/13059309
#SPJ11

A system consisting initially of 0. 5 m3 of air at 358C, 1 bar, and 70% relative humidity is cooled at constant pressure to 298C. Determine the work and heat transfer for the process, each in kJ

Answers

To determine the work and heat transfer for the process of cooling the system consisting of 0.5 m³ of air at 35°C, 1 bar, and 70% relative humidity to 29°C at constant pressure.

We need to consider the changes in volume and temperature.  First, let's consider the volume change:

Initial volume = 0.5 m³

Final volume = 0.5 m³ (constant pressure)

Since the volume remains constant, there is no work done on or by the system (W = 0 kJ).

Next, let's consider the heat transfer: To calculate the heat transfer, we need to consider the specific heat capacity of air and the change in temperature:

Specific heat capacity of air at constant pressure (Cp) = 1.005 kJ/kg°C (approximately)

Mass of air:

To determine the mass, we need to know the density of air. At 1 bar and 35°C, the density of dry air is approximately 1.184 kg/m³. Since the relative humidity is 70%, we can assume that the water vapor occupies a negligible volume compared to the air. Therefore, we consider the mass of dry air only.

Mass of air = Density × Volume = 1.184 kg/m³ × 0.5 m³ = 0.592 kg

Change in temperature (ΔT) = Final temperature - Initial temperature = 29°C - 35°C = -6°C

Heat transfer (Q) = Mass × Cp × ΔT = 0.592 kg × 1.005 kJ/kg°C × (-6°C) = -3.57 kJ

Since the system is being cooled, heat is being transferred out of the system. The negative sign indicates that heat is leaving the system.

Therefore, the work done is 0 kJ, and the heat transfer is approximately -3.57 kJ (negative indicating heat leaving the system).

Learn more about relative humidity here

https://brainly.com/question/30415486

#SPJ11

The company you work for plans to release a waste stream containing 10 mg/L of phenol (C6H5OH). Calculate the theoretical oxygen demand of this waste stream. It may be helpful to use the following (unbalanced) chemical equation and to remember that ThOD should be reported in mg O2/L. CoH5OH (s) + __ 02 (g) → __CO2 (g) + H20 (1)

Answers

A waste stream with 10 mg/L of phenol has a theoretical oxygen demand of 5.08 mg O₂/L.

The balanced chemical equation for the combustion of phenol is:

C₆H₅OH + 15/2 O₂ → 6 CO₂ + 3 H₂O

From the balanced equation, we can see that 15/2 moles of O₂ are required to oxidize one mole of phenol.

Converting the given concentration of phenol to moles per liter:

10 mg/L C₆H₅OH × (1 mol/94.11 g) = 0.1062 × 10⁻³ mol/L C₆H₅OH

So, the theoretical oxygen demand can be calculated as:

ThOD = (15/2) × 0.1062 × 10⁻³ mol/L C₆H₅OH × (32 g/mol O₂) × (1000 mg/g) = 5.08 mg O₂/L

Therefore, the theoretical oxygen demand of the waste stream containing 10 mg/L of phenol is 5.08 mg O₂/L.

To know more about the theoretical oxygen refer here :

https://brainly.com/question/29777501#

#SPJ11

fill in the blank. the [oh-] of a 0.010 m ba(oh)2 solution is _____ m and the poh is equal to _____.

Answers

The [OH-] of a 0.010 M Ba(OH)2 solution is 0.020 M and the pOH is equal to 1.70. To calculate the [OH-], you must first realize that Ba(OH)2 dissociates into Ba2+ and 2OH-.

The concentration of OH- is twice the concentration of Ba(OH)2. Thus, [OH-] = 2(0.010 M) = 0.020 M.

To find the pOH, you can use the equation pOH = -log[OH-]. Substituting in the value for [OH-], pOH = -log(0.020) = 1.70. Therefore, the [OH-] of a 0.010 M Ba(OH)2 solution is 0.020 M and the pOH is equal to 1.70.

Learn more about solution here ;

https://brainly.com/question/30665317

#SPJ11

Saturated steam at 1 atm condenses on a vertical
plate that is maintained at 90°C by circulating cooling water
through the other side. If the rate of heat transfer by condensation
to the plate is 180 kJ/s, determine the rate at which the
condensate drips off the plate at the bottom.

Answers

The rate at which the condensate drips off the plate at the bottom is 597 g/s.

The rate of heat transfer by condensation to the plate is given as 180 kJ/s.

We can use the heat transfer equation to determine the rate at which the condensate drips off the plate. The heat transfer equation is;

Q = m([tex]L_{f}[/tex] + CpΔT)

Where Q is heat transferred, m is mass of the condensate, Lf is the latent heat of fusion, Cp is specific heat of the condensate, and ΔT is  temperature difference between the condensate and the plate.

At the point of condensation, the steam is at its saturation temperature of 100°C. The condensate will be at the same temperature as the plate, which is 90°C.

The latent heat of fusion for water is 2257 kJ/kg, and the specific heat of water is 4.18 kJ/kg-K.

To find the mass of the condensate, we need to use the steam tables. At 1 atm, the specific volume of saturated steam is 1.672 m³/kg. The volume of steam that condenses on the plate can be found by assuming that it is a thin film and using the surface area of the plate. Let's assume that the plate has a surface area of 1 m². Then the mass of the condensate is;

m = (1 m²) / (1.672 m³/kg) = 0.597 kg

Now we can plug in the values into the heat transfer equation:

180 kJ/s = (0.597 kg)(2257 kJ/kg + 4.18 kJ/kg-K(100°C - 90°C))

Solving for the rate at which the condensate drips off the plate, we get:

m = 0.597 kg/s = 597 g/s

Therefore, the rate is 597 g/s.

To know more about condensation here

https://brainly.com/question/956180

#SPJ4

how to sketch the wave function of the hydrogen atom ground state

Answers

To sketch the wave function of the hydrogen atom ground state, one can use the radial wave function and the angular wave function.

The radial wave function for the ground state of the hydrogen atom is given by:

[tex]R(r) = (1/a_0)^{(3/2) }* 2 * \exp (-r/a_{0}),[/tex]

where a_0 is the Bohr radius (0.529 angstroms) and r is the distance from the nucleus.

The angular wave function for the ground state is given by:

Y(θ,φ) = (1/√4π)

where θ is the polar angle and φ is the azimuthal angle.

To sketch the wave function, first plot the radial wave function as a function of r. The function has a maximum at r=0, and decreases rapidly as r increases. Next, use the angular wave function to determine the shape of the probability density in space. The probability density is given by |R(r)|^2 * |Y(θ,φ)|^2.

For the ground state, the probability density has a spherical symmetry, with the highest probability of finding the electron at the nucleus and a lower probability of finding it at larger distances. The sketch of the wave function would show a spherical shape, centered at the nucleus, with a smooth decrease in probability density as the distance from the nucleus increases.

For more such questions on  wave function visit:

https://brainly.com/question/30905785

#SPJ11

How many moles of H3N will be produced from the reaction of 11. 8 moles of N2 with H2?

Answers

We find that the number of moles of H3N produced is approximately 23.6 mol. Therefore, from the reaction of 11.8 moles of N2 with H2, 23.6 moles of H3N will be produced.

Based on the balanced equation for the reaction, we can determine the stoichiometric ratio between N2 and H3N. The balanced equation for the reaction is:

N2 + 3H2 → 2NH3

From the equation, we can see that 1 mole of N2 reacts with 3 moles of H2 to produce 2 moles of NH3.

To calculate the moles of H3N produced, we multiply the given moles of N2 by the stoichiometric ratio:

moles of H3N = moles of N2 * (moles of H3N / moles of N2)

moles of H3N = 11.8 mol * (2 mol H3N / 1 mol N2)

By performing this calculation, we find that the number of moles of H3N produced is approximately 23.6 mol. Therefore, from the reaction of 11.8 moles of N2 with H2, 23.6 moles of H3N will be produced.

To learn more about moles click here, brainly.com/question/15209553

#SPJ11

draw the structure of n-ethyl-1-hexanamine or n-ethylhexan-1-amine.

Answers

The structure of  n-ethyl-1-hexanamine or n-ethylhexan-1-amine is shown in the image attached below.

N-EthylhexylamineMolecular Formula: The molecular formula for N-Ethylhexylamine is C₈H₁₉N.Synonyms: Some common synonyms for N-Ethylhexylamine are N-Ethylhexan-1-amine, 1-ethylhexylamine, and N-ethyl-1-hexylamine.Molecular Weight: The molecular weight of N-Ethylhexylamine is approximately 129.24 g/mol.Chemical Properties: N-Ethylhexylamine is a colorless to slightly yellow liquid with a strong, unpleasant odor. It is soluble in most organic solvents but has limited solubility in water. As an amine, it is a weak base, meaning it can form salts when reacting with acids. N-Ethylhexylamine has a boiling point of around 175°C and a melting point of around -69°C. It is flammable and can produce toxic fumes when burned.N-Ethylhexylamine is a versatile chemical compound used in various industries. It is used as a reagent or intermediate in chemical synthesis, a surfactant in industrial processes, a solvent in the formulation of paints, coatings, adhesives, and inks, a catalyst in certain chemical reactions, and in gas treatment processes such as removing acid gases from natural gas. It is also used as a pH regulator or stabilizer in various industrial applications.

learn more about N-ethyl-1-hexanamine

https://brainly.com/question/31990221

#SPJ11


Use the Ksp values to calculate the molar solubility of each of the following compounds in pure water.MX (Ksp = 2.31×10−11)Ag2CrO4 (Ksp = 1.12×10−12)Ni(OH)2 (Ksp = 5.48×10−16)

Answers

The molar solubility of MX in pure water is approximately 4.81×10^−6 M, the molar solubility of silver chromate is approximately 1.09×10^−4 micro Moles, and the molar solubility of nickel hydroxide is approximately 5.70 micro Moles.

The molar solubility of a compound is the number of moles of the compound that can dissolve per liter of solution before reaching saturation.

To calculate the molar solubility, we need to use the equilibrium expression for the dissolution of the compound, as well as the given Ksp value. For the compound MX, the dissolution equilibrium can be written as:[tex]MX(s) = M^+(aq) + X^-(aq)[/tex]

The Ksp value of[tex]2.31×10^{-11}[/tex] is the product of the concentrations of the ions in solution at equilibrium, and can be written as: [tex]Ksp = [M^+][X^-][/tex]

Since MX dissociates completely, we can assume that the concentration of MX at equilibrium is equal to the molar solubility, s. Therefore:

Ksp = [tex][M^+][X^-] = s^2[/tex]

[tex]s = sqrt(Ksp) = sqrt(2.31×10^−11) ≈ 4.81×10^−6 M[/tex]

The Ksp value of 1.12 is the product of the concentrations of the ions in the solution at equilibrium, and can be written as:

[tex]Ksp = [Ag^+]^2[CrO4^2-][/tex] Assuming that the molar solubility of Silver chromate is s, we can write: [tex][Ag^+] = 2s, [CrO4^2-] = s[/tex]

Substituting into the Ksp expression, we get: Ksp = (2s)^2 * s = 4s^3 Solving for s, we get: s = (Ksp/4)^(1/3) = (1.12×10^−12/4)^(1/3) ≈ 1.09×10^−4 M

Assuming that the molar solubility of nickel hydroxide is s, we can write:

[tex][Ni^2+] = s [OH^-] = 2s[/tex]. Substituting into the Ksp expression, we get: Ksp =[tex]s * (2s)^2 = 4s^3[/tex] Solving for s, we get: [tex]s = (Ksp/4)^(1/3) = (5.48×10^−16/4)^(1/3) ≈ 5.70×10^−6 M[/tex]

Know more about  molar solubility here:

https://brainly.com/question/28170449

#SPJ11

What is the free energy change in kJmol associated with the following reaction under standard conditions? CH3COOH(l)+2O2(g)⟶2CO2(g)+2H2O(g) The standard free energy of formation data are as follows: ΔG∘f,CH3COOH(l)=-389.9kJmolΔG∘f,CO2(g)=-394.4kJmolΔG∘f,H2O(g)=-228.6kJmol

Answers

The free energy change in kJmol associated with the given reaction under standard conditions is -1232.3 kJmol.

We can use the formula for calculating the standard free energy change (ΔG∘) of a reaction, which is:

ΔG∘ = ΣΔG∘f(products) - ΣΔG∘f(reactants)

Where ΣΔG∘f represents the sum of the standard free energy of formation of each reactant or product, and the subscript "f" stands for formation.

Using the given standard free energy of formation data, we can substitute the values into the formula:

ΔG∘ = (2 × ΔG∘f(CO2)) + (2 × ΔG∘f(H2O)) - ΔG∘f(CH3COOH) - (2 × ΔG∘f(O2))

ΔG∘ = (2 × -394.4 kJmol) + (2 × -228.6 kJmol) - (-389.9 kJmol) - (2 × 0 kJmol)

ΔG∘ = -788.8 kJmol - 457.2 kJmol + 389.9 kJmol

ΔG∘ = -856.1 kJmol

Therefore, the free energy change in kJmol associated with the given reaction under standard conditions is -856.1 kJmol.


In the given reaction, we can see that the products (CO2 and H2O) have a lower standard free energy of formation than the reactant (CH3COOH), which means that energy is released during the reaction. This is reflected in the negative value of the standard free energy change (-856.1 kJmol), indicating that the reaction is spontaneous under standard conditions.

To learn more about free energy change visit:

brainly.com/question/31170437

#SPJ11

A sample of 8.8x10-12 mol of antimony-11 (122Sb) emits 6.6x109 β−− particles per minute. Calculate the specific activity of the sample (in Ci/g). 1 Ci = 3.70x1010 d/s.Enter to 0 decimal places.

Answers

The specific activity of the sample containing 8.8x10⁻¹² mol of antimony-11 (¹²²Sb) is approximately 67.8 Ci/g.

Specific activity is a measure of the radioactivity per unit mass of a radioactive sample. It is calculated by dividing the activity of the sample (number of radioactive decays per unit time) by the mass of the sample.

Given:

Number of β⁻ particles emitted per minute = 6.6x10⁹

1 Ci = 3.70x10¹⁰ decays per second

To calculate the specific activity, we need to convert the number of β⁻ particles emitted per minute to decays per second:

Activity (A) = (6.6x10⁹) / 60

Next, we convert the number of decays per second to curies:

A (in Ci) = A (in decays per second) / (3.70x10¹⁰)

Now, we calculate the specific activity by dividing the activity by the mass of the sample:

Specific activity = A (in Ci) / (8.8x10⁻¹²)

Substituting the values and calculating, we get:

Specific activity ≈ (6.6x10⁹ / 60) / (3.70x10¹⁰ * 8.8x10⁻¹²)

Simplifying the expression, we find:

Specific activity ≈ 67.8 Ci/g

To know more about specific activity, refer here:

https://brainly.com/question/30972080#

#SPJ11

Determine which of the following pairs of reactants will result in a spontaneous reaction at 25 ∘C.
Determine which of the following pairs of reactants will result in a spontaneous reaction at 25 .
H2(g) + Cd2+(aq)
I−(aq) + Zn2+(aq)
Ba(s) + Mn2+(aq)
Ag(s) + Ni2+(aq)
All of the above pairs will react.

Answers

Spontaneous reactions will occur between the following pairs of reactants at 25°C:

H2(g) + Cd2+(aq)

I−(aq) + Zn2+(aq)

Ba(s) + Mn2+(aq)

Ag(s) + Ni2+(aq)

Which of these pairs of reactants will result in a spontaneous reaction at 25°C?

In a spontaneous reaction, the reactants will naturally combine to form products without requiring external intervention. The spontaneity of a reaction is determined by the change in Gibbs free energy (ΔG), where a negative value indicates a spontaneous process.

By analyzing the standard reduction potentials of the half-reactions involved, we can determine the spontaneity of each reaction.

To determine the spontaneity of a reaction, we compare the standard reduction potentials of the reactants involved.

The greater the difference in reduction potentials, the more likely the reaction will be spontaneous. The pairs of reactants listed exhibit spontaneous reactions at 25°C because the reduction potentials favor the formation of products.

This means that under standard conditions, these reactions will occur without the need for additional energy input.

Learn more about spontaneous reaction

brainly.com/question/31199175

#SPJ11

Conscious experience is the activation of reentrant neural fibers in the prefrontal cortex. Who would say that sort of thing? A. A computer scientist B. A dualist C. An Identity theorist D. A functionalist

Answers

The correct answer is D - a functionalist. However, it's worth noting that others may also agree with this statement to varying degrees depending on their specific perspective on consciousness.

This statement aligns with their belief that mental states and brain states are identical, and thus consciousness can be explained in terms of neural activity. A computer scientist might say something similar, as they might approach consciousness as a product of information processing in the brain. However, they might not focus on reentrant neural fibers specifically. A dualist would likely disagree with this statement, as they believe that consciousness is separate from the physical processes of the brain.

An identity theorist might agree that conscious experience is a product of neural activity in the prefrontal cortex, but they might not specifically mention reentrant neural fibers. A functionalist might also agree with this statement, as they focus on the function and purpose of consciousness rather than its physical substrate. However, they might not specifically mention reentrant neural fibers either.

To know more about scientist visit :-

https://brainly.com/question/21091535

#SPJ11

Determine the theoretical oxygen demand of a waste that contains 100 mg/L of methanol CH3OH.

Answers

The theoretical oxygen demand of the waste containing 100 mg/L of methanol is approximately 0.004677 mol/L.

To determine the theoretical oxygen demand (ThOD) of a waste containing methanol (CH3OH), we need to know the stoichiometric equation for the oxidation of methanol and the amount of oxygen required per unit of methanol.

The stoichiometric equation for the oxidation of methanol is as follows:

[tex]CH_{3} OH + 1.5O_{2}[/tex] → [tex]CO_{2} + 2H_{2} O[/tex]

From the equation, we can see that 1 mole of methanol ([tex]CH_{3} OH[/tex]) reacts with 1.5 moles of oxygen ([tex]O_{2}[/tex]) to produce 1 mole of carbon dioxide (CO2) and 2 moles of water ([tex]H_{2} O[/tex]).

Now, let's calculate the ThOD of the waste containing 100 mg/L of methanol:

Convert the concentration of methanol to moles per liter:

100 mg/L × (1 g/1000 mg) × (1 mol/32.04 g) = 0.003118 mol/L (rounded to 6 decimal places)

Calculate the ThOD using the stoichiometric ratio:

ThOD = 0.003118 mol/L (methanol) × 1.5 mol O2/mol[tex]CH_{3} OH[/tex] = 0.004677 mol/L (rounded to 6 decimal places)

Therefore, the theoretical oxygen demand of the waste containing 100 mg/L of methanol is approximately 0.004677 mol/L.

Learn more about The theoretical oxygen demand:https://brainly.com/question/13251445

#SPJ11

the total pressure of an o2-ar-he gas mixture is 755 mmhg. if the partial pressure of ar is 174 mmhg and the partial pressure of he is 389 mmhg, then the partial pressure of o2 is -

Answers

Answer:

192mmHg

Explanation:

The partial pressure of O2 in the gas mixture is 192 mmHg. The correct option is a.

What is Partial Pressure?

Partial pressure refers to the pressure exerted by a single gas in a mixture of gases. In a mixture, each gas exerts a partial pressure proportional to its concentration or mole fraction and is independent of the presence of other gases.

Dalton's law of partial pressures states that the total pressure of a gas mixture is equal to the sum of the partial pressures of its individual components.

The total pressure of a gas mixture is the sum of the partial pressures of the individual gases. In this case, the total pressure is given as 755 mmHg, and the partial pressures of Ar and He are given as 174 mmHg and 389 mmHg, respectively.

To find the partial pressure of O2, we subtract the sum of the partial pressures of Ar and He from the total pressure:

Partial pressure of O2 = Total pressure - Partial pressure of Ar - Partial pressure of He

= 755 mmHg - 174 mmHg - 389 mmHg

= 192 mmHg

Therefore, the partial pressure of O2 in the gas mixture is 192 mmHg, which corresponds to option (a).

To learn more about partial pressure,  from the given link .

https://brainly.com/question/30235826#

#SPJ4

Complete question:

The total pressure of an O2-Ar-He gas mixture is 755 mmHg. If the partial

pressure of Ar is 174 mmHg and the partial pressure of He is 389 mmHg,

then the partial pressure of O2 is —

a 192 mmHg

b 282 mmHg

c 366 mmHg

d 563 mmHg

Which of the following should exhibit the highest viscosity at 298 K?
A) HOCH₂CH₂OH
B) CH₃OCH₃
C) CH₃OH
D) CH₃Br
E) CH₂Cl₂

Answers

The compound that should exhibit the highest viscosity at 298 K is [tex]HOCH_2CH_2OH[/tex]. Viscosity is a measure of a fluid's resistance to flow. It is influenced by intermolecular forces, molecular size, and shape.

In this case, we need to compare the given compounds to determine which one would have the highest viscosity at 298 K. Among the options, [tex]HOCH_2CH_2OH[/tex] (ethylene glycol) is the compound with the highest viscosity at 298 K.

Ethylene glycol is a polar molecule with strong intermolecular hydrogen bonding. These hydrogen bonds result in stronger attractive forces between the molecules, making it difficult for them to flow past each other. As a result, ethylene glycol has a higher viscosity compared to the other compounds.

The other compounds, [tex]CH_3OCH_3[/tex] (dimethyl ether),[tex]CH_3OH[/tex] (methanol), [tex]CH_3Br[/tex] (methyl bromide), and [tex]CH_2Cl_2[/tex] (dichloromethane), do not have as strong intermolecular forces as ethylene glycol. They have weaker London dispersion forces and dipole-dipole interactions. Consequently, their viscosities are lower than that of ethylene glycol at 298 K.

Learn more about viscosity here:

https://brainly.com/question/30759211

#SPJ11

At what point during the titration of a weak acid with a strong base will the pH of the solution being titrated equal the pka of the weak acid? At after one equivalence of titrant has is added After exactly half of the equivalence volume of titrant is added. At the very beginning of the titration before any titrant is added. It depends on the pka of the weak acid.

Answers

The pH of the solution being titrated and involved in titration with a strong base will equal the pka of the weak acid at the halfway point of the equivalence volume of titrant being added.

This is because at this point, the concentration of the weak acid and its conjugate base are equal, resulting in the pH being equal to the pKa according to the Henderson-Hasselbalch equation. At this point, half of the weak acid has been converted to its conjugate base and the pH is equal to the pka of the weak acid. However, it is important to note that the exact point at which the pH equals the pKa may vary slightly depending on the specific pka value of the weak acid being titrated.

Learn more about titration : https://brainly.com/question/186765

#SPJ11

which of the following molecules contains an exception to the octet rule? select one: a. hbr b. n2o c. i2 d. co e. no

Answers

The molecule that contains an exception to the octet rule is (e) NO, nitrogen monoxide.

In general, atoms tend to form chemical bonds in a way that allows them to achieve a stable electron configuration with a full outer shell of electrons. This is known as the octet rule, where atoms strive to have eight electrons in their outermost shell. However, there are some cases where atoms can have fewer or more than eight electrons in their outer shell, resulting in exceptions to the octet rule. In the case of NO, the nitrogen atom has seven valence electrons, and the oxygen atom has six valence electrons. When they form a bond, nitrogen shares one of its electrons with oxygen, resulting in a nitrogen-oxygen bond. This leaves nitrogen with only seven electrons in its outer shell, which is one short of the octet. The molecule NO is stable because the unpaired electron in nitrogen's outer shell allows it to maintain its stability. Therefore, among the given options, the molecule NO (nitrogen monoxide) contains an exception to the octet rule, as nitrogen does not have a complete octet of electrons in its outer shell.

Learn more about octet rule here:

https://brainly.com/question/30779148

#SPJ11

Given the values of ΔHfo in kJ/mol and So in J/mol K given below, calculate the value of ΔGo in kJ for the reaction at 298 K: MnO2(s) + 2 CO(g) => Mn(s) + 2 CO2(g)ΔHfo (MnO2) = -524ΔHfo (CO(g)) = -114ΔHfo (CO2) = -398So MnO2(s) = 50So CO(g) = 192So Mn(s) = 36So CO2(g) = 196Correct Answer:Correct

Answers

The value of ΔGo for the reaction at 298 K is 129 kJ/mol.

To calculate ΔGo, we use the equation: ΔGo = ΔHo - TΔSo, where ΔHo is the standard enthalpy change, T is the temperature in Kelvin, and ΔSo is the standard entropy change.

First, we need to calculate the standard enthalpy change for the reaction by summing up the standard enthalpies of formation for the products and subtracting the sum of the standard enthalpies of formation for the reactants: ΔHo = [2(-114) + (-398)] - [-524] = 96 kJ/mol

Next, we calculate the standard entropy change for the reaction by summing up the standard entropies of the products and subtracting the sum of the standard entropies of the reactants: ΔSo = [2(196) + 36] - [50 + 2(192)] = -114 J/mol K

Now we can plug in the values to calculate ΔGo: ΔGo = 96 - 298(-114/1000) = 129 kJ/mol

Therefore, the value of ΔGo for the reaction at 298 K is 129 kJ/mol.

To know more about enthalpy, refer here:

https://brainly.com/question/16720480#

#SPJ11

An atom with an atomic number of 14 will have electrons in its valence shell. O 8 O 10 O 2 O 14 DANO

Answers

An atom of silicon with an atomic number of 14 will have 4 electrons in its valence shell. The valence shell of an atom is the outermost shell that contains electrons, and for silicon, the valence shell has 4 electrons

An atom with an atomic number of 14 is silicon, and it will have electrons in its valence shell. The valence shell of an atom is the outermost shell that contains electrons, and for silicon, the valence shell has 4 electrons. This is because the atomic number of 14 indicates that silicon has 14 protons in its nucleus, and therefore, it also has 14 electrons orbiting the nucleus.

These electrons occupy various shells or energy levels, with the valence shell being the highest energy level or outermost shell. Silicon belongs to group 14 of the periodic table, which means it has 4 valence electrons, and it tends to form covalent bonds by sharing these electrons with other elements.

So, an atom of silicon with an atomic number of 14 will have 4 electrons in its valence shell.

To know more about valence shell, refer

https://brainly.com/question/29551049

#SPJ11

Other Questions
the two lateral ventricles are separated by a thin membrane partition called the There were 104 females and 78 males present at the high school pep rally. Find the ratio of males to the total number of people present. Express as a simplified ratio. which of the following is correct? the larger the level of significance, the more likely you are to fail to reject the null hypothesis. the level of significance is the maximum risk we are willing to take in committing a type ii error. for a given level of significance, if the sample size increases, the probability of committing a type i error will remain the same. for a given level of significance, if the sample size increases, the probability of committing a type ii error will increase. the operations budget reflects: a. capital expenditures b. revenues and expenses c. cash receipts and disbursements d. balance sheet items which of the following items below would be an input in sprint planning? please select two. Determine all the singular points of the given differential equation. (t2-t-6)x"' + (t+2)x' (t-3)x= 0 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The singular point(s) is/are t = (Use a comma to separate answers as needed.) OB. The singular points are allts and t= (Use a comma to separate answers as needed.) C. The singular points are all t? and t= (Use a comma to separate answers as needed.) D. The singular points are all t> O E. The singular points are all ts OF. There are no singular points. design a simple, spur gear train for a ratio of 6:1 and a diametral pitch of 5. specify pitch diameters and numbers of teeth. calculate the contact ratio. what do leon festinger, walter mischel and david rosenhan have in common? a cylinder/piston contains 1 kg propane gas at 100 kpa, 300 k. the gas is compressed reversibly to a pressure of 800 kpa. calculate the work required if the process is adiabatic. what is the mass (in kg) of air in a square room if the room has walls that are 9.82 feet high and 9.82 long and the density of air is 1.3 g/l in a(n) _____________ question, the respondent is not provided with any answers from which to choose. Consider the set of successive ionization energies. IE| = 418.8 kJ/mol IE2 = 3052 kJ/mol IE IEZ 4420 kJ/mol IE4 = 5877 kJ/molIdentify the element in period 4 that corresponds to this set of ionization energies. a. Ca b. Ge c. Ga __________ approaches provide a vision and recommendations for improving ethical decision-making. Consider the van der Waals equation for gases. Identify the correct statement(s). 1. A low value for a reflects weak intermolecular forces among the gas molecules. 2. A high value for a reflects weak intermolecular forces among the gas molecules. 3. Among the gases H2, N2, CH4, and CO2, H2 has the lowest value for a. O1 only 2 and 3 1 and 3 2 only 3 only use linear approximation to estimate f(2.85) given that f(3)=2 and f'(3)=6 create a macro that will convert a temperature measurement (not a temperature difference) from fahrenheit to celsius using the formula: C = (5/9) (F-32) Use relative addressing, so that the following original Fahrenheit temperatures may appear anywhere on the worksheet. F1=46 F2=82 F3=115 3. Tarrant Corporation was organized this year to operate a financial consulting business. The charter authorized the following stock: common stock, par value $10 per share, 11,500 shares authorized. During the year, the following selected transactions were completed: 1) Prepare the journal entries required to record the transaction of common stock a. Sold 5,600 shares of common stock for cash at $20 per share. b. Sold 1,000 shares of common stock for cash at $25 per share. 2) Prepare the stockholders' equity section as it should be reported on the year-end balance sheet a. At year-end, the accounts reflected income of $12,000. No dividends were declared. 1H35Cl has a force constant of 516 Nm1 and a bond length of 127.5 pm. The isotopic mass of 1H atom is 1.0078 amu and the isotopic mass of 35Cl atom is 34.9689 amu. Calculate the frequencies of the light corresponding to the lowest energy pure vibrational transition and lowest energy pure rotational transition. examine the following code: vector v{1, 2, 3}; auto x = (begin(v)); what does x represent? windows xp null modem ppp connect to workplace. TRUE OR FALSE?