Consider the following system at equilibrium where Kc = 1.20×10-2 and ΔH° = 87.9 kJ/mol at 500K. PCl5(g) <=> PCl3(g) + Cl2(g) The production of PCl3(g) is favored by: (Indicated true (T) or false (F) for each of the following choices) 1. ____ Increasing the temperature 2. __ Increasing the pressure (by changing the volume) 3. _____ Decreasing the volume 4. _____ Adding PCl5 5. ______ Removing Cl2

Answers

Answer 1

1. True Increasing the temperature 2. False Increasing the pressure (by changing the volume) 3. True Decreasing the volume 4. False Adding PCl5 5. True Removing Cl2

1. True - According to Le Chatelier's principle, if the equilibrium constant is small, the forward reaction is endothermic. Therefore, increasing the temperature would shift the equilibrium towards the products, favoring the production of PCl3.
2. False - Changing the pressure by increasing the volume would shift the equilibrium towards the side with more moles of gas. In this case, there is no difference in the number of moles of gas on either side of the equation, so changing the pressure would not affect the equilibrium position.
3. True - Decreasing the volume would increase the pressure, which would favor the side with fewer moles of gas. In this case, there is only one mole of gas on the product side and two moles of gas on the reactant side, so decreasing the volume would favor the production of PCl3.
4. False - Adding more PCl5 would shift the equilibrium towards the side with more PCl5, favoring the production of Cl2 and PCl3.
5. True - Removing Cl2 would shift the equilibrium towards the products, favoring the production of PCl3.

For more such questions on temperature , Visit:

https://brainly.com/question/27988898

#SPJ11

Answer 2

The chemical reaction is PCl5(g) <=> PCl3(g) + Cl2(g)

where Kc = 1.20×10-2 and ΔH° = 87.9 kJ/mol at 500K

The production of PCl3(g) is favored by:

1. T - Increasing the temperature (since ΔH° is positive, the reaction is endothermic, and increasing the temperature will favor the endothermic reaction, thus producing more PCl3(g))

2. F - Increasing the pressure (by changing the volume) (this will favor the side with fewer moles of gas, which is the PCl5 side)

3. F - Decreasing the volume (this also increases the pressure, favoring the side with fewer moles of gas, which is the PCl5 side)

4. T - Adding PCl5 (according to Le Chatelier's principle, adding more PCl5 will shift the equilibrium to the right, increasing the production of PCl3(g))

5. T - Removing Cl2 (removing Cl2 will also shift the equilibrium to the right, favoring the production of PCl3(g))

Learn more about Le Chatelier's principle  click here:

https://brainly.com/question/29009512

#SPJ11


Related Questions

this molecule has formula c21h?no5. how many hydrogens are present?

Answers

The formula for heroin is actually [tex]C_2_1H_2_3NO_5[/tex]. Therefore, there are 23 hydrogen atoms present in a heroin molecule.

The formula for the molecule given is incomplete, as it is missing one or more of the elemental symbols. Assuming that the molecule is heroin, which has the molecular formula [tex]C_2_1H_2_3NO_5[/tex]., we can determine the number of hydrogens present using the formula:

Number of hydrogens = 2n + 2 - (m + x)/2

where n is the number of carbons, m is the number of nitrogens, and x is the number of halogens (in this case, there are no halogens).

Plugging in the values for heroin, we get:

Number of hydrogens = 2(21) + 2 - (1 + 0)/2

= 23

Therefore, there are 23 hydrogens present in heroin.

To know more about Hydrogen refer here :

https://brainly.com/question/24433860

#SPJ11

Heroin this molecule has formula c21h?no5. how many hydrogens are present?

How can 100. ml of sodium hydroxide solution with a ph of 13. 00 be converted to a sodium hydroxide solution with a ph of 12. 00 ?.

Answers

To convert a 100 ml sodium hydroxide solution with a pH of 13.00 to a pH of 12.00, an acid solution with a lower pH needs to be added in controlled amounts to neutralize the excess hydroxide ions.

Sodium hydroxide (NaOH) is a strong base that dissociates completely in water, yielding hydroxide ions (OH-) responsible for its high pH. To lower the pH from 13.00 to 12.00, an acid needs to be added to neutralize the excess hydroxide ions. One common acid used for this purpose is hydrochloric acid (HCl).

The first step is to calculate the amount of hydrochloric acid required. The difference in pH between 13.00 and 12.00 represents a tenfold difference in concentration of hydroxide ions. Therefore, the hydroxide ion concentration needs to be reduced by a factor of 10. Since the concentration is directly proportional to the volume, adding 10 ml of hydrochloric acid should be sufficient.

To perform the conversion, measure 10 ml of hydrochloric acid using a graduated cylinder or pipette and carefully add it to the sodium hydroxide solution while stirring gently. After each addition, check the pH using a pH meter or pH indicator paper until the desired pH of 12.00 is reached. It's important to proceed slowly and monitor the pH continuously to avoid overshooting the target pH. Once the desired pH is achieved, the solution can be used as a sodium hydroxide solution with a pH of 12.00.

Learn more about acid solution here:

https://brainly.com/question/29639696

#SPJ11

If the original population trapped in the lake thousands of years ago had full armor, does the data collected in the last century suggest natural selection has occurred? Explain your reasoning using data from the chart and your knowledge of stickleback fish.

Answers

Yes, the data suggests natural selection in stickleback fish, as the chart shows a decrease in full armor frequency.

The stickleback fish is well known for its adaptability and is often studied in the context of natural selection. In this case, if the original population trapped in the lake thousands of years ago had full armor, it suggests that they were better equipped to defend against predators.

However, over time, environmental conditions might have changed, leading to different selection pressures. The chart indicates a decrease in the frequency of stickleback fish with full armor, which implies that individuals with reduced or no armor had a higher survival or reproductive advantage.

This change in the population's armor characteristics suggests that natural selection has occurred. Individuals with reduced armor were likely more successful in their environment, allowing their traits to become more prevalent over generations.

To learn more about  stickleback fish click here

brainly.com/question/30513832

#SPJ11

what is the proeutectoid phase for an iron– carbon alloy in which the mass fractions of total ferrite and total cementite are 0.86 and 0.14, respectively? (2 pts.)

Answers

The proeutectoid phase in the given iron-carbon alloy with mass fractions of total ferrite and total cementite of 0.86 and 0.14, respectively, is ferrite, with a mass fraction of 55%.

To determine the proeutectoid phase in an iron-carbon alloy with given mass fractions of total ferrite and total cementite, we first need to determine the eutectoid composition of the alloy.

Step 1: Determine the eutectoid composition

The eutectoid composition is the composition of the alloy at which the eutectoid reaction occurs, which is the transformation of austenite to pearlite. For iron-carbon alloys, the eutectoid composition is 0.8% carbon.

Step 2: Compare the alloy composition to the eutectoid composition

The alloy composition given in the question has a higher carbon content than the eutectoid composition, so it is a hypereutectoid alloy.

Step 3: Determine the mass fraction of proeutectoid ferrite

For a hypereutectoid alloy, the proeutectoid phase is ferrite. The mass fraction of proeutectoid ferrite can be calculated using the lever rule:

mass fraction of proeutectoid ferrite = (C - Ce)/(Ceut - Ce)

where C is the carbon content of the alloy, Ce is the eutectoid carbon content, and Ceut is the carbon content of the alloy at which the proeutectoid phase starts to form.

Ceut can be calculated using the lever rule for the proeutectoid cementite:

mass fraction of proeutectoid cementite = (Ceut - C)/(Ceut - Ce)

The mass fractions of total ferrite and total cementite are given in the question as 0.86 and 0.14, respectively. Therefore, we can write:

0.86 = (Ceut - 0.8)/(6.7 - 0.8) --> Ceut = 1.37%

0.14 = (1.37 - C)/(1.37 - 0.8) --> C = 0.96%

Therefore, the proeutectoid phase in this iron-carbon alloy is ferrite, and its mass fraction is:

mass fraction of proeutectoid ferrite = (0.96 - 0.8)/(1.37 - 0.8) = 0.55 or 55%.

To learn more about proeutectoid phase

https://brainly.com/question/29573462

#SPJ4

An organism capable of producing citrate permease (citrase} will cause the Simmons citrate media to turn 3 19 points Mulliple Choice eBook green O aelcrences yellow blue

Answers

An organism capable of producing citrate permease (citrase) will cause the Simmons citrate media to turn **blue**.

The Simmons citrate media is a differential medium used to distinguish organisms based on their ability to utilize citrate as a carbon source. If an organism possesses citrate permease, it can transport citrate into the cell and utilize it for energy production. As a result, the organism undergoes metabolic reactions that increase the pH of the medium, causing the pH indicator bromothymol blue to turn from green to blue.

The color change from green to blue indicates a positive reaction, suggesting that the organism is capable of utilizing citrate as a carbon source. On the other hand, if the medium remains green, it indicates a negative reaction, implying that the organism cannot utilize citrate.

Learn more about differential media and citrate utilization tests

https://brainly.com/question/28198477?referrer=searchResults

#SPJ11.

what reagent prevents tin from reacting with h2s to form sns2

Answers


The reagent that prevents tin from reacting with H2S to form SnS2 is concentrated hydrochloric acid (HCl).


1. In the presence of H2S, tin can react to form tin sulfide (SnS2) as follows: Sn + 2H2S → SnS2 + 2H2.
2. To prevent this reaction from occurring, we can use concentrated hydrochloric acid (HCl).
3. HCl reacts with H2S to form hydrogen chloride gas and sulfur according to the reaction: 2HCl + H2S → 2H2 + S↓.
4. This reaction removes H2S from the system, making it unavailable to react with tin and form SnS2.


1. Tin reacts with H2S to form SnS2.
2. To prevent this reaction, we can use concentrated HCl.
3. HCl reacts with H2S, forming hydrogen chloride gas and sulfur.
4. This reaction removes H2S from the system.
5. With no H2S available, tin cannot form SnS2.


Concentrated hydrochloric acid (HCl) is the reagent that effectively prevents tin from reacting with H2S to form tin sulfide (SnS2) by removing H2S from the system through a chemical reaction.

To know more about hydrochloric acid  visit:

brainly.com/question/15102013

#SPJ11

What must you do before adding the equations? multiply the second equation by 2 multiply the first equation by 1/3 multiply the third equation by 1/2.

Answers

Before adding equations, the given instructions specify multiplying the second equation by 2, the first equation by 1/3, and the third equation by 1/2. These operations ensure that the coefficients of corresponding variables align properly, allowing for addition of the equations.

When adding equations, it is necessary to ensure that the coefficients of the variables in corresponding positions are the same. In this case, the given instructions provide specific multiplication factors for each equation to achieve this alignment.

By multiplying the second equation by 2, the coefficients of the variables in the second equation are doubled. This ensures that the corresponding variables in the first and second equations have the same coefficients when adding them together.

Similarly, multiplying the first equation by 1/3 scales down the coefficients of the variables in the first equation, making them compatible with the other equations. Likewise, multiplying the third equation by 1/2 adjusts the coefficients of the variables in the third equation to match the other equations.

Overall, these operations ensure that the coefficients of the variables in the corresponding positions of the equations are in alignment, allowing for the addition of the equations to simplify or solve the system of equations.

Learn more about variables here:

https://brainly.com/question/15078630

#SPJ11

which of these choices is the electron configuration of the iron(iii) ion? group of answer choices [ar]3d5 [ar]4s13d5 [ar]3d6 [ar]4s13d3 [ar]4s23d9

Answers

The electronic configuration of the iron(III) ion is [Ar]3d5. This can be determined by considering the electronic structure of neutral iron (Fe), which has the electron configuration [Ar] 4s23d6. So the first option is correct answer.

Iron (Fe) has an atomic number of 26, and its ground state electronic configuration is [Ar]4s2 3d6.To form an iron(III) ion (Fe³⁺), iron loses three electrons.The first two electrons are removed from the 4s subshell, resulting in [Ar]3d6.The third electron is removed from the 3d subshell, resulting in the final electronic configuration [Ar]3d5.

So, the correct choice is first option [Ar]3d5 for the electron configuration of the iron(III) ion.

To learn more about electronic configuration: https://brainly.com/question/26084288

#SPJ11

The AGº for the reaction of CO2 (g) with elemental iron to generate iron(III) oxide and carbon monoxide is +29.6 kJ/mol. Calculate the equilibrium constant for this reaction at 25°C. 2Fe(s) + 3C02(g) D Fe2O3(s) + 3CO(g) AG° = +29.6 kJ/mol O 3.01 10-3 1.53 105 O 6.52 x 10-6 O 0.988 O 1.01

Answers

The equilibrium constant for the given reaction at 25°C is approximately 1.53 × 10^5.

To calculate the equilibrium constant (K) for the given reaction at 25°C, we need to use the equation:

ΔG° = -RT ln(K)

Where:

ΔG° = Standard Gibbs free energy change for the reaction (in joules)

R = Gas constant (8.314 J/(mol·K))

T = Temperature in Kelvin

K = Equilibrium constant

First, let's convert the given ΔG° from kJ/mol to J/mol:

ΔG° = +29.6 kJ/mol = +29.6 × 10^3 J/mol

The temperature is given as 25°C, so we need to convert it to Kelvin:

T = 25°C + 273.15 = 298.15 K

Now we can plug the values into the equation to solve for K:

ΔG° = -RT ln(K)

K = e^(-ΔG° / (RT))

K = e^(-(+29.6 × 10^3 J/mol) / (8.314 J/(mol·K) × 298.15 K))

Calculating the value:

K ≈ 1.53 × 10^5

The equilibrium constant can be calculated using the formula K = e^(-AG°/RT), where R is the gas constant (8.314 J/mol.K), and T is the temperature in Kelvin (25°C = 298 K). Substituting the given values, we get K = e^(-29.6/(8.314 x 298)) = 1.53 x 10^5.

Learn more about reaction here :

https://brainly.com/question/28984750

#SPJ11

if you measure the ph of a carbonic acid solution to be 5.6, what is the concenration of the h3o in solution?

Answers

The concentration of the H₃O⁺ in the carbonic acid solution with pH equal to 5.6 is approximately 2.51 × 10⁻⁶ M.

To determine the concentration of H₃O⁺ (hydronium ions) in a carbonic acid solution with a pH of 5.6, you can use the following formula:

pH = -log₁₀[H₃O⁺]

First, rearrange the formula to solve for [H₃O⁺]:

[H₃O⁺] = 10^(-pH)

Next, substitute the given pH value (5.6) into the formula:

[H₃O⁺] = 10^(-5.6)

[H₃O⁺] ≈ 2.51 × 10⁻⁶ M

So, the concentration of H₃O⁺ in the carbonic acid solution is approximately 2.51 × 10⁻⁶ M.

Learn more about pH here: https://brainly.com/question/26424076

#SPJ11

Calculate the cell potential for the following reaction that takes place in an electrochemical cell at 25°C. Sn(s) | Sn2+(aq, 0.022 M) || Ag+(aq, 2.7 M) | Ag(s)a. -0.83 Vb. +1.01 Vc. -0.66 Vd. +1.31 Ve. +0.01 V

Answers

The cell potential for the given reaction at 25°C is -0.66 V, which corresponds to option (c).

The cell potential for the given electrochemical cell can be calculated using the Nernst equation:

Ecell = E°cell - (RT/nF) * ln(Q)

where:

E°cell is the standard cell potential

R is the gas constant (8.314 J/mol·K)

T is the temperature in Kelvin (25°C = 298 K)

n is the number of electrons transferred in the balanced redox reaction

F is the Faraday constant (96,485 C/mol)

Q is the reaction quotient, which is the ratio of product concentrations to reactant concentrations, each raised to their stoichiometric coefficients.

In this case, the balanced redox reaction is:

Sn(s) + 2Ag+(aq) → Sn2+(aq) + 2Ag(s)

The standard reduction potentials for the half-reactions involved can be found in tables, and the standard cell potential can be calculated as:

E°cell = E°reduction (cathode) - E°oxidation (anode)

E°cell = (+0.80 V) - (-0.14 V) (from tables)

E°cell = +0.94 V

To calculate the reaction quotient, we can use the concentrations given in the problem and the stoichiometry of the balanced reaction:

Q = [Sn2+(aq)] / [Ag+(aq)]^2

Q = (0.022 M) / (2.7 M)^2

Q = 0.000915

Now we can substitute the values into the Nernst equation and solve for Ecell:

Ecell = E°cell - (RT/nF) * ln(Q)

Ecell = +0.94 V - (8.314 J/mol·K / (2 * 96,485 C/mol) * ln(0.000915))

Ecell = -0.66 V

For more question on cell potential click on

https://brainly.com/question/29643320

#SPJ11

The correct answer is (b) +1.01 V. The cell potential can be calculated using the Nernst equation: Ecell = E°cell - (RT/nF) ln(Q)

Nernst equation: Ecell = E°cell - (RT/nF) ln(Q), where E°cell is the standard cell potential, R is the gas constant, T is the temperature in kelvins, n is the number of electrons transferred in the balanced equation, F is the Faraday constant, and Q is the reaction quotient.

In this case, the balanced equation for the cell reaction is:

Sn(s) + 2 Ag+(aq) → Sn2+(aq) + 2 Ag(s)

The standard reduction potentials for Sn2+(aq) and Ag+(aq) are -0.14 V and +0.80 V, respectively. Thus, the standard cell potential can be calculated as:

E°cell = E°red, cathode - E°red, anode

= (+0.80 V) - (-0.14 V)

= +0.94 V

To calculate Q, we need to use the concentrations of the species in the half-cells. The concentration of Sn2+(aq) is given as 0.022 M, and the concentration of Ag+(aq) is given as 2.7 M. Thus:

Q = [Sn2+(aq)] / [Ag+(aq)]

= 0.022 / 2.7

= 0.0081

Substituting the values into the Nernst equation gives:

Ecell = E°cell - (RT/nF) ln(Q)

= +0.94 V - (0.0257/2) ln(0.0081)

= +1.01 V

Therefore, the cell potential for the given reaction is +1.01 V.

Learn more about Nernst equation here :

https://brainly.com/question/31593791

#SPJ11

the electron configuration of a chromium atom is a. [ar]4s24d3. b. [ar]4s24p4. c. [ar]4s23d3. d. [ar]4s23d4. e. [ar]4s13d5.

Answers

The electron configuration of a chromium atom is [Ar] 3d⁵ 4s¹ or, alternatively, [Ar] 3d⁴ 4s². Option D is correct.

This is because chromium has 24 electrons, and the electron configuration is determined by filling up orbitals in order of increasing energy. The 3d orbital has a slightly lower energy than the 4s orbital, so electrons fill the 3d orbital before filling the 4s orbital.

For the first five electrons, they fill the 3d orbital; 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵. For the last electron, it fills the 4s orbital, giving the configuration [Ar] 3d⁵ 4s¹. However, chromium is an exception to the normal filling order of electrons, and it is actually more stable to have a half-filled 3d orbital, so another possible configuration is [Ar] 3d⁴ 4s².

Hence, D. is the correct option.

To know more about electron configuration here

https://brainly.com/question/14283892

#SPJ4

Use the information provided to determine the maximum (theoretical) amount of CaCO3, in grams, that can be produced from the precipitation reaction. Initial: CaCl2•2H2O (g) - 1.50g Initial: CaCl2•2H2O (mol) - 147.02 g/mol Initial: CaCl2 (mol) - 0.0102 mol Initial: Na2CO3 (mol) - 106g/mol Initial: Na2CO3 (g) - 1.081

Answers

The maximum amount of [tex]CaCO_3[/tex] that can be produced is 0.0102 mol x 100.09 g/mol = 1.01 g.

To determine the maximum amount of [tex]CaCO_3[/tex] that can be produced from the given reaction, we need to first find the limiting reactant.

This can be done by comparing the number of moles of CaCl2 and [tex]Na_2CO_3[/tex].

From the given information, we know that the number of moles of [tex]CaCl_2[/tex] is 0.0102 mol, while the number of moles of [tex]Na_2CO_3[/tex] is not provided.

However, we can use the mass of [tex]Na_2CO_3[/tex] (1.081 g) and its molar mass (106 g/mol) to calculate the number of moles: 1.081 g / 106 g/mol = 0.0102 mol.

Since the number of moles of both reactants is the same, neither is in excess, and [tex]CaCl_2[/tex] is the limiting reactant.

The maximum amount of [tex]CaCO_3[/tex] that can be produced is therefore 0.0102 mol x 100.09 g/mol = 1.01 g.

For more such questions on maximum, click on:

https://brainly.com/question/26567900

#SPJ11

The maximum theoretical amount of CaCO3 that can be produced is 0.0102 mol, which is equivalent to 1.499 g.

This is based on stoichiometry, where one mole of CaCl2 reacts with one mole of Na2CO3 to produce one mole of CaCO3.

To calculate the maximum amount of CaCO3 produced, first determine the limiting reagent, which is the reactant that will be completely used up in the reaction. In this case, the limiting reagent is CaCl2 because there is less of it than Na2CO3.

Next, use the stoichiometric ratio between CaCl2 and CaCO3 to determine how much CaCO3 can be produced from the given amount of CaCl2. Since one mole of CaCl2 produces one mole of CaCO3, and there are 0.0102 mol of CaCl2, the maximum amount of CaCO3 that can be produced is also 0.0102 mol.

Finally, convert the amount of CaCO3 in moles to grams using its molar mass of 100.09 g/mol. The maximum amount of CaCO3 that can be produced is therefore 1.499 g.

Learn more about CaCO3 here:

https://brainly.com/question/30260402

#SPJ11

what is the mass of 1.77 ×1025 zinc atoms?

Answers

The mass of 1.77 × 10²⁵ zinc atoms is approximately 296 grams.

The molar mass of zinc (Zn) is 65.38 g/mol, which means that one mole of zinc atoms has a mass of 65.38 grams. Avogadro's number (N_A) is the number of atoms or molecules in one mole of a substance and is equal to 6.022 × 10²³. Therefore, the mass of one zinc atom can be calculated as follows:

Mass of one zinc atom = (65.38 g/mol) / (6.022 × 10²³ atoms/mol)

= 1.09 × 10⁻²² g/atom

To calculate the mass of 1.77 × 10²⁵ zinc atoms, we can simply multiply the mass of one zinc atom by the number of atoms:

Mass of 1.77 × 10²⁵ zinc atoms = (1.77 × 10²⁵ atoms) × (1.09 × 10⁻²² g/atom)

≈ 296 g

To know more about molar mass, refer here:

https://brainly.com/question/7585012#

#SPJ11

Consider the following reaction in aqueous solution, 5Br?(aq)+BrO3?(aq)+6H+(aq)?3Br2(aq)+3H2O(l) If the rate of appearance of Br2 at a particular moment during the reaction is 0.025 M s-1, what is the rate of disappearance (in M s-1) of Br- at that moment?

Answers

The rate of disappearance of Br^-(aq) at the particular moment during the reaction is 0.0417 M s^-1.

According to the balanced chemical equation, for every 5 moles of Br-(aq) that reacts, 3 moles of Br2(aq) are created. As a result, the rate of disappearance of Br-(aq) is 5/3 that of the rate of appearance of Br2(aq).

This relationship can be expressed mathematically as:

(5/3) x (rate of appearance of Br2(aq)) = (rate of disappearance of Br-(aq))

Substituting 0.025 M s-1 for the indicated rate of appearance of Br2(aq), we get:

(rate of Br-(aq) disappearance) = (5/3) x 0.025 M s-1

When we simplify this expression, we get:

(Br-(aq) disappearance rate) = 0.0417 M s-1

As a result, the rate of disappearance of Br-(aq) at the specific point in the reaction is 0.0417 M s-1.

For such more question on reaction:

https://brainly.com/question/11231920

#SPJ11

The rate of disappearance of Br^-(aq) at the particular moment during the reaction is 0.0417 M s^-1.According to the balanced chemical equation, for every 5 moles of Br-(aq) that reacts, 3 moles of Br2(aq) are created.

As a result, the rate of disappearance of Br-(aq) is 5/3 that of the rate of appearance of Br2(aq).This relationship can be expressed mathematically as:(5/3) x (rate of appearance of Br2(aq)) = (rate of disappearance of Br-(aq))Substituting 0.025 M s-1 for the indicated rate of appearance of Br2(aq), we get:(rate of Br-(aq) disappearance) = (5/3) x 0.025 M s-1When we simplify this expression, we get:(Br-(aq) disappearance rate) = 0.0417 M s-1As a result, the rate of disappearance of Br-(aq) at the specific point in the reaction is 0.0417 M s-1.

Learn more about disappearance here:

brainly.com/question/11231920

#SPJ11

Susie wants to make a solution in the lab she is given 3 moles of barium fluoride (baf2) this solute is placed in 2L of water,what is the concentration?????????

Answers

the concentration of the barium fluoride solution is 1.5 M, indicating that there are 1.5 moles of BaF2 dissolved in every liter of the solution.

To calculate the concentration of the barium fluoride (BaF2) solution, we need to determine the moles of BaF2 and divide it by the volume of water.

Given:
Moles of BaF2 = 3 moles
Volume of water = 2 L

Concentration is defined as moles of solute per liter of solution. We can calculate it using the following formula:

Concentration = Moles of Solute / Volume of Solution

In this case, the volume of the solution is the same as the volume of water.

Concentration = 3 moles / 2 L

To simplify the calculation, we can express the concentration in units of moles per liter (M).

Concentration = 1.5 M

Therefore, the concentration of the barium fluoride solution is 1.5 M, indicating that there are 1.5 moles of BaF2 dissolved in every liter of the solution.

 To  learn  more  about barium click here:brainly.com/question/30888146

#SPJ11

when summing torques for an object in static equilibrium, any point on the object can be used as the axis of rotation. a. true b. false

Answers

The answer is true. When summing torques for an object in static equilibrium, any point on the object can be used as the axis of rotation. This is because in static equilibrium, the net torque on the object must be zero, regardless of the axis of rotation chosen. Answering more than 100, I hope this helps!

False. when summing torques for an object in static equilibrium, any point on the object can be used as the axis of rotation.

What is torque?

Torque is the measure of the force that can cause an object to rotate about an axis. Force is what causes an object to accelerate in linear kinematics.

If we want to sum the torques for an object in static equilibrium, the axis of rotation must be chosen carefully.

So we can conclude that the statement is wrong, "when summing torques for an object in static equilibrium, any point on the object can be used as the axis of rotation".

Thus, when summing torques for an object in static equilibrium, only selected point on the object can be used as the axis of rotation.

Learn more about torque here: https://brainly.com/question/14839816

#SPJ4

Neutralization of 18. 02 ml h2so4(aq) required 13. 14 ml of 0. 35 m naoh(aq). What is the molar concentration of h2so4(aq)? a. 0. 26 b. 0. 0030 c. 0. 96 d. 0. 13 e. 0. 48

Answers

The molar concentration of H2SO4(aq) is 0.26 M.

To determine the molar concentration of H2SO4(aq), we can use the concept of stoichiometry and the balanced equation for the neutralization reaction between H2SO4 and NaOH:

H2SO4(aq) + 2NaOH(aq) -> Na2SO4(aq) + 2H2O(l)

From the balanced equation, we can see that the mole ratio between H2SO4 and NaOH is 1:2. Given that 13.14 mL of 0.35 M NaOH was required to neutralize the H2SO4, we can calculate the number of moles of NaOH used:

moles of NaOH = volume (L) x concentration (M) = 0.01314 L x 0.35 M = 0.004599 moles

Since the mole ratio between H2SO4 and NaOH is 1:2, the number of moles of H2SO4 can be determined as:

moles of H2SO4 = 0.004599 moles / 2 = 0.0022995 moles

Finally, to calculate the molar concentration of H2SO4, we divide the moles of H2SO4 by the volume of H2SO4 used:

concentration of H2SO4 = moles / volume (L) = 0.0022995 moles / 0.01802 L ≈ 0.1275 M

Therefore, the molar concentration of H2SO4(aq) is approximately 0.26 M.

To learn more about molar concentration click here

brainly.com/question/21841645

#SPJ11

Using standard reduction potentials from the ALEKS Data tab, calculate the standard reaction free energy ΔG0 for the following redox reaction.Round your answer to
3 significant digits.
H2(g) + 2OH−(aq) + Zn2+(aq) → 2H2O(l) + Zn(s)

Answers

The standard reaction free energy ΔG° for the given redox reaction is -146000 J/mol.

To calculate ΔG° for the redox reaction, follow these steps:

1. Identify the half-reactions involved:
 Oxidation: Zn(s) → Zn2+(aq) + 2e-
 Reduction: 2H+(aq) + 2e- → H2(g)
 (Note: H+ is used because standard reduction potentials are based on H+ ions, not OH-)

2. Find the standard reduction potentials (E°) for each half-reaction:
 Oxidation (Zn): E° = -0.76 V
 Reduction (H2): E° = 0.00 V

3. Calculate the overall standard cell potential (E°cell):
 E°cell = E°(reduction) - E°(oxidation) = 0.00 - (-0.76) = 0.76 V

4. Use the Nernst equation to calculate ΔG°:
 ΔG° = -nFE°cell
 n = number of electrons transferred (2 in this case)
 F = Faraday constant (96485 C/mol)

5. Calculate ΔG°:
 ΔG° = -2(96485)(0.76) = -146249.2 J/mol
 Round to 3 significant digits: ΔG° = -146000 J/mol

For more such questions on redox, click on:

https://brainly.com/question/21851295

#SPJ11

The standard reaction free energy ΔG0 for the given redox reaction can be calculated using the standard reduction potentials from the ALEKS Data tab.

The reduction half-reactions are:

Zn2+(aq) + 2e- → Zn(s)    E°red = -0.763 V

O2(g) + 2H2O(l) + 4e- → 4OH-(aq)    E°red = 0.401 V

By multiplying the first half-reaction by 2 and adding the resulting equation to the second half-reaction, we get the overall redox equation:

2H2(g) + 2OH-(aq) + Zn2+(aq) → 2H2O(l) + Zn(s)

The standard reaction free energy ΔG0 can be calculated using the formula:

ΔG0 = -nFE°cell

where n is the number of electrons transferred in the balanced redox equation, F is the Faraday constant (96,485 C/mol), and E°cell is the standard cell potential.

In this case, n = 2 (since two electrons are transferred), and E°cell is given by the difference in the reduction potentials:

E°cell = E°red (cathode) - E°red (anode)

      = 0.401 V - (-0.763 V)

      = 1.164 V

Thus, the standard reaction free energy ΔG0 is:

ΔG0 = -nFE°cell

    = -(2)(96,485 C/mol)(1.164 V)

    = -225,536 J/mol

    = -225.5 kJ/mol (rounded to 3 significant digits)

Therefore, the standard reaction free energy ΔG0 for the given redox reaction is -225.5 kJ/mol. This negative value indicates that the reaction is thermodynamically favorable, meaning that it can occur spontaneously under standard conditions.

Learn more about Zn2+(aq) + 2e- → Zn(s) here:

https://brainly.com/question/20193948

#SPJ11

A gas has a volume of 100. 0 mL at a pressure of 600. 0 mm Hg. If the temperature is held constant, what is the


volume of the gas at a pressure of 800. 0 mm Hg?

Answers



at a pressure of 800.0 mm Hg, the volume of the gas would be 75.0 mL, assuming the temperature remains constant.To find the volume of the gas at a pressure of 800.0 mm Hg, we can use Boyle's Law.

 which states that the pressure and volume of a gas are inversely proportional when temperature is held constant. Mathematically, this can be represented as P1V1 = P2V2, where P1 and V1 are the initial pressure and volume, and P2 and V2 are the final pressure and volume.

Given:
P1 = 600.0 mm Hg
V1 = 100.0 mL
P2 = 800.0 mm Hg

Using the formula, we can rearrange it to solve for V2:
V2 = (P1 * V1) / P2

Plugging in the values:
V2 = (600.0 mm Hg * 100.0 mL) / 800.0 mm Hg

Canceling the units:
V2 = (600.0 * 100.0) / 800.0
V2 = 75.0 mL

Therefore, at a pressure of 800.0 mm Hg, the volume of the gas would be 75.0 mL, assuming the temperature remains constant.

 To  learn  more  about temperatures click here:brainly.com/question/14045710

#SPJ11

a sample of gas occupies a volume of 237.5 ml at 763.2 torr and 273.2 k. what volume will the sample occupy at 950.0 torr if the temperature is held constant?

Answers

A sample of gas occupies 175.6 ml volume will the sample occupy at 950.0 torr if the temperature is held constant.

To solve this problem, we can use the combined gas law equation, which states that the product of pressure and volume is directly proportional to the temperature. This equation can be expressed as P1V1/T1 = P2V2/T2, where P1, V1, and T1 are the initial pressure, volume, and temperature, and P2 and V2 are the final pressure and volume.
Using the given values, we have P1 = 763.2 torr, V1 = 237.5 ml, T1 = 273.2 K, and P2 = 950.0 torr. We need to find V2.
First, we can rearrange the equation to solve for V2: V2 = (P1V1T2)/(P2T1). Then, we can substitute the values and calculate:
V2 = (763.2 torr x 237.5 ml x 273.2 K)/(950.0 torr x 273.2 K)
V2 = 175.6 ml
Therefore, the sample of gas will occupy a volume of 175.6 ml at 950.0 torr if the temperature is held constant. It is important to note that in this calculation, we assumed that the amount of gas and the type of gas remained constant.

To know more about temperature visit:

brainly.com/question/24453878

#SPJ11

a 0.25 g sample of a pretzel is burned. the heat it gives off is used to heat 50. g of water from 18 °c to 42 °c. what is the energy value of the pretzel, in kcal/g?

Answers

If a 0.25 g sample of a pretzel is burned. the heat it gives off is used to heat 50. g of water from 18 °c to 42 °c. The energy value of the pretzel is approximately 4.8 kcal/g.

To calculate the energy value of the pretzel in kcal/g, we will use the given information and the specific heat formula. The specific heat formula is Q = mcΔT, where Q represents the heat absorbed or released, m is the mass of the substance, c is the specific heat capacity, and ΔT is the change in temperature.

For this problem, the mass of water (m) is 50 g, the specific heat capacity of water (c) is 4.18 J/g°C, and the change in temperature (ΔT) is 42 °C - 18 °C = 24 °C.

First, we calculate the heat absorbed by the water (Q) using the formula:
Q = (50 g) × (4.18 J/g°C) × (24 °C) = 5020.8 J.

Next, we need to convert this energy from joules to kilocalories (kcal). There are 4.184 J in 1 calorie and 1 kcal equals 1000 calories. So, we have:

5020.8 J × (1 cal / 4.184 J) × (1 kcal / 1000 cal) ≈ 1.2 kcal.

Now, we can find the energy value of the pretzel by dividing the total energy (1.2 kcal) by the mass of the pretzel sample (0.25 g):

Energy value = (1.2 kcal) / (0.25 g) ≈ 4.8 kcal/g.

You can learn more about specific heat at: brainly.com/question/30403247

#SPJ11

what will be the main cyclic product of an intramolecular aldol condensation of this molecule?

Answers

This reaction is highly favored, and the resulting cyclic product would be the main product of the reaction. Overall, the condensation of this molecule would result in the formation of a cyclic six-membered ring.

If we are considering an intramolecular aldol condensation of a molecule, the main cyclic product would be a six-membered ring that is formed from the reaction. The aldol condensation is a reaction where two carbonyl compounds, usually an aldehyde and a ketone, react with each other in the presence of a base to form a β-hydroxy carbonyl compound. In the case of an intramolecular aldol condensation, the reaction takes place within the same molecule, resulting in the formation of a cyclic compound. The six-membered ring would be formed by the attack of the hydroxyl group on the carbonyl group, followed by the elimination of a water molecule.

to know more about intermolecular  molecule visit:

brainly.com/question/9828612

#SPJ11

Calculate the ph of a 100ml buffer solution of 0.175m hclo and 0.15m naclo

Answers

The pH of a 100 ml buffer solution of 0.175 M HClO and 0.15 M NaClO is 7.18.

To calculate the pH of a buffer solution, we need to use the Henderson-Hasselbalch equation:

pH = pKa + log([A-]/[HA])

Where pKa is the dissociation constant of the weak acid, [A-] is the concentration of the conjugate base, and [HA] is the concentration of the weak acid.

In this case, the weak acid is HClO and its pKa is 7.54. The conjugate base is ClO-.

First, we need to calculate the concentrations of the weak acid and the conjugate base:

[HClO] = 0.175 M

[ClO-] = 0.15 M

Next, we need to calculate the ratio of the concentrations of the conjugate base to the weak acid:

[ClO-]/[HClO] = 0.15/0.175 = 0.857

Now we can use the Henderson-Hasselbalch equation to calculate the pH:

pH = 7.54 + log(0.857) = 7.18

Therefore, the pH of a 100 ml buffer solution of 0.175 M HClO and 0.15 M NaClO is 7.18.

Learn more about buffer solution here,

https://brainly.com/question/8676275

#SPJ11

What was the purpose of the extraction with dichloromethane ?what would have happened if these extractions were omitted "...in basic hydrolysis of benzonitrile

Answers

The purpose of the extraction with dichloromethane in the basic hydrolysis of benzonitrile is to remove impurities and isolate the desired product. Dichloromethane is a common organic solvent that is immiscible with water, making it useful for extracting organic compounds from aqueous solutions.

In this process, dichloromethane is used to extract the product from the reaction mixture, leaving behind any impurities or unreacted starting materials in the aqueous layer. The dichloromethane layer is then separated and evaporated to yield the purified product.

If the extractions with dichloromethane were omitted in the basic hydrolysis of benzonitrile, impurities and unreacted starting materials would remain in the final product, affecting its purity and yield. These impurities could also interfere with any subsequent reactions or analyses of the product.

Additionally, the product may not be able to be separated from the aqueous layer, leading to difficulty in isolating and purifying the product. Therefore, the extraction with dichloromethane is an important step in the overall synthesis of the desired product.

To know more about dichloromethane refer here:

https://brainly.com/question/31810080#

#SPJ11

Use tabulated electrode potentials to calculate ?G? for the reaction.
2Li(s)+2H2O(l)?H2(g)+2OH?(aq)+2Li+(aq)
Express your answer to three significant figures and include the appropriate units.
G = Is the reaction spontaneous?
yes
no

Answers

Answer:The half-reactions for the given overall reaction are:

2Li+ (aq) + 2e- → 2Li(s)   E° = -3.04 V

2H2O(l) + 2e- → H2(g) + 2OH-(aq)   E° = -0.83 V

The overall reaction is obtained by adding the two half-reactions and cancelling the electrons:

2Li(s) + 2H2O(l) → H2(g) + 2OH-(aq) + 2Li+(aq)

The standard cell potential, E°cell, is the difference between the two half-reactions:

E°cell = E°reduction - E°oxidation

E°cell = (-0.83 V) - (-3.04 V)

E°cell = 2.21 V

The Gibbs free energy change, ?G?, is related to the standard cell potential, E°cell, through the equation:

?G° = -nFE°cell

where n is the number of electrons transferred in the reaction and F is the Faraday constant (96,485 C/mol).

In this case, n = 2 (since two electrons are transferred in each half-reaction) and:

?G° = -2 × 96,485 C/mol × 2.21 V

?G° = -423,068 J/mol

?G° = -423 kJ/mol (to three significant figures)

Since the value of ?G° is negative, the reaction is spontaneous.

Answer: ?G° = -423 kJ/mol. The reaction is spontaneous.

Learn more about Electrochemistry:

https://brainly.com/question/31955958?referrer=searchResults

#SPJ11

The value of Kw for water at 0°C is 1 x 10-15. What is the pOH of water at 0°C? 07.0 06.5 0 7.5 08.0 15.0

Answers

The pOH of water at 0°C can be calculated using the relationship: pOH = 0.5*(-log(Kw)). At 0°C, Kw = 1 x 10^-15, therefore pOH = 7.5.

The Kw, or the ion product constant of water, is a measure of the degree of dissociation of water into H+ and OH- ions. At 0°C, Kw has a value of 1 x 10^-15, indicating that the degree of dissociation of water into H+ and OH- ions is extremely low.

pOH is defined as the negative logarithm of the hydroxide ion concentration, [OH-]. However, since [H+] and [OH-] are related by Kw = [H+][OH-], we can also calculate pOH using the relationship: pOH = -log[OH-] = -log(Kw/[H+]).

At 0°C, we can assume that [H+] and [OH-] are equal, so [H+] = [OH-] = sqrt(Kw) = 1 x 10^-7 M. Substituting this value into the pOH expression, we get pOH = -log(1 x 10^-15/1 x 10^-7) = 7.5.

Learn more about relationship here:

https://brainly.com/question/28465561

#SPJ11

suppose you have 450.0 ml of a 0.250 m sodium hydroxide solution. how many moles of sodium hydroxide are in the solution?

Answers

The solution has a molarity of one when one gram of solute dissolves in one liter of solution. The total volume of the solution is determined because the solvent and solute combine to form a solution. Here the moles of NaOH is  0.1125 moles.

The molarity of a specific solution is defined as the total number of moles of solute per liter of solution. Molarity is denoted by the letter M, also known as a molar.

The ratio of the moles of the solute whose molarity needs to be calculated is multiplied by the volume of solvent needed to dissolve the supplied solute.

M = Number of moles  / Volume in liters

n = molarity × Volume in liters

450.0 mL = 0.45 L

n = 0.250 × 0.45 = 0.1125 moles

To know more about molarity, visit;

https://brainly.com/question/16727614

#SPJ1

(a) which species has the highest energy-filled or partially-filled orbitals?

Answers

The species with the highest energy-filled or partially-filled orbitals is the one with electrons occupying the highest energy level or subshell in its electron configuration.

The species with the highest energy-filled or partially-filled orbitals depends on the specific element or molecule being considered. In general, however, atoms and molecules with a partially-filled valence shell (outermost shell) tend to have higher energy-filled orbitals compared to those with a fully-filled valence shell. This is because partially-filled orbitals have more unpaired electrons, which can interact more readily with other electrons and other atoms/molecules. Additionally, elements with a higher atomic number tend to have higher energy-filled orbitals due to the increased number of electrons and protons in their nucleus.
Based on the terms provided, I can give you a general answer:  In such species, electrons reside in orbitals that are farther from the nucleus and require more energy to maintain their positions.

To know more about electron visit:

https://brainly.com/question/12001116

#SPJ11

Succinic anhydride yields the cyclic imide succinimide when heated with ammonium chloride at 200 degree C Propose a structure for the initially-formed tetrahedral intermediate in this reaction.

Answers

When succinic anhydride is heated with ammonium chloride at 200 degree Celsius, it undergoes a nucleophilic attack by the ammonium ion, resulting in the formation of an initially-formed tetrahedral intermediate. This intermediate has four groups bonded to the central carbon atom, which is also bonded to the oxygen of the anhydride group.

The ammonium ion acts as a nucleophile, attacking the carbonyl carbon of the anhydride. This results in the formation of a tetrahedral intermediate, which contains the ammonium group, two carbonyl oxygens, and the carbon atom of the anhydride group. The nitrogen of the ammonium group has a positive charge, while the carbon atom of the anhydride group has a partial negative charge due to the electron-withdrawing nature of the carbonyl groups.
The tetrahedral intermediate is unstable and undergoes a rearrangement to form succinimide, releasing ammonia and carbon dioxide as byproducts. Succinimide is a cyclic imide that contains a five-membered ring with two carbonyl groups and a nitrogen atom.
In summary, the initially-formed tetrahedral intermediate in the reaction between succinic anhydride and ammonium chloride is formed by the nucleophilic attack of the ammonium ion on the carbonyl carbon of the anhydride group. This intermediate is unstable and undergoes a rearrangement to form succinimide.

To know more about Ammonium Chloride visit:

https://brainly.com/question/23387600

#SPJ11

Other Questions
Referring to Chapter 38, this question has three sections. Each section is multiple choice, please select one answer per section.i) If we change an experiment so to decrease the uncertainty in the location of a particle along an axis, what happens to the uncertainty in the particles momentum along that axis?increasesdecreasesremains the sameii) Under what energy circumstances does an electron tunnel through a potential barrier? Explain selected.when the kinetic energy is greater than the potential energywhen the potential energy is greater than the total energywhen the potential energy is less than the total energyiii) How does an electrons de Broglie wavelength after tunneling compare with that before tunneling (when the potential energy is the same before and after, as in this section)?The wavelength is the same after tunneling.The wavelength is greater after tunneling.The wavelength is less after tunneling. How do we know how many slack variables are in an initial tableau? Part CClose the simulation window for carbon dioxide and return to the Cool Molecules Explore page.Next, click C and H in the periodic table and repeat the process for methane (CH). In the table below, record the names of its vibrational modesand describe the vibration of the molecule in each mode. Also record the number of unique possible states for each mode.Vibration ModeAl stretchE bendT2 stretchT2 bendNumber of States in the:ModeDescription: Write a sql query to return the total number of businesses for each category. your query result should be saved in a table called "query1" which has these attributes: category_id, name, count. Valeria: Bueno, primero, en la maana, fui a mis clases de baile y despus, en la tarde, un amigo me trajo flores1. enter answer2. enter answerValeria: A veces quisiera largarme de esta casa! Y ahora, ni siquiera puedo hablar por telfono. 3. enter answerAntonio: Los tres ramos bien unidos, siempre estbamos juntos. 4. enter answerAntonio: De acuerdo y luego, podemos ir a pasear por la playa. 5. enter answer A patient's far point is 115 cm and her near point is 14.0 cm. In what follows, we assume that we can model the eye as a simple camera, with a single thin lens forming a real image upon the retina. We also assume that the patient's eyes are identical, with each retina lying 1.95 cm from the eye's "thin lens."a.) What is the power, P, of the eye when focused upon the far point? (Enter your answer in diopters.)b.) What is the power, P, of the eye when focused upon the near point? (Enter your answer in diopters.)c.) What power (in diopters) must a contact lens have in order to correct the patient's nearsightedness? .Suppose Ana has a yearly budget of $120 to spend on milk and yogurt. Milk is priced at $2 per gallon, and yogurt is priced at $6 per container.If Ana spends his entire $120 on milk, he can buy _____ gallons of milk. If he spends his entire $120 on yogurt, he can buy _____ containers of yogurt.Plot Ana's budget constraint and shade the area that represents combinations of milk and yogurt that are affordable for Ana. Place a black point on the point on Ana's budget constraint that corresponds to a scenario in which Ana spends $60 on each good.What does the slop of Ana's budget constraint represent?a. The cost of an additional container of yogurt in terms of dollars.b. The cost of an additional gallon of milk in terms of dollars.c. The opportunity cost of an additional container of yogurt in terms of gallons of milk.d. The opportunity cost of an additional gallon of milk in terms of containers of yogurt.Suppose Ana receives $120 from his grandmother and decides to dedicate this money to buy more milk and yogurt. Draw Ana's new budget constraint.True or false: Ana faces the same tradeoff between milk and yogurt. Since the first intelligence quotient (iq) tests, psychologists have found that girls tend to do better than boys on _____, whereas boys tend to do better than girls on _____. Which of following will increase the non-ideal behavior of gases? 1. Increasing system volume II. Increasing system temperature III. Increasing system pressure IV. Increasing the number of gas molecules OIV only O II, III and IV lll and IV O land II Previousplease helpp!! Place the following steps in the expression of the lac operon in the order in which each occurs for the first time after a cell is induced.Sigma protein dissociates from RNA polymerase.A peptide bond is formed between the first two amino acids in galactosidase.A phosphodiester bond is formed between two ribonucleotides.RNA polymerase dissociates from the lacA gene.A repressor dissociates from an operator.A ribosome subunit binds to a transcript. All of the following are common methods of allocating factory overhead costs to products except thea.activity-based costing method.b.average costing method.c.multiple production department factory overhead rate method.d.single plantwide factory overhead rate method. pls help. Learning a language opens doors to a world of opportunity. Of course, in order to really benefit from your studies, youll need to do more than just complete assignments. Youll need to set habits that will tie you to Spanish and its cultures even beyond the classroom. Students who become lifelong learners of Spanish have some basic characteristics and habits that you should develop if you want to get the most from your experience learning Spanish.Lifelong learners:Have friends with whom they regularly converse in the target language. (This could be friends in school, neighbors or friends in the community.)Regularly get information from target language sources (newspapers, magazines, Internet Spanish related news group (with parents approval), TV programs, radio, etc. that are produced by and for native speakers.)Participate in activities of the target culture (celebrating holidays, seeing movies or plays of/in the target culture, preparing or eating dishes from the target culture, reading books or magazines from the target culture, etc.)Someone who has developed these habits is on the way to becoming a lifelong learner. These types of habits reinforce a strong connection to the language and culture and develop a love and better understanding of that culture.Think for a minute about the resources available. Do you have friends who are native Spanish speakers? Do you ever watch Spanish channels on television? You can probably think of several online sources. Maybe you have some stores or restaurants in your community that are owned or frequented by Spanish speakers. Also think about when you could participate in Spanish-related activities on a regular basisremember that its setting the habits that will make the most difference.Using the table below as a guideline, write out a plan for starting new habits. For the Language or Culture Resources column, try to identify three different resources: 1. A friend or contact 2. An information source, and 3. A cultural activity. In the What I Will Do column, describe as specifically as you can what you will do. And in the When I Will Do It column, write when you plan on doing these activities. See the sample below to see how you might fill out your own table.You will have opportunities to follow up and report on your regular practice of engaging Spanish resources close to home. You will be asked in a follow up assignment to report on what you have done. Output TFC 25 25 25 25 25 25 TVC TC 25 50 65 95 MC ATC 25 25 50 32.5 70 110 160 4 33.75 50 What is the marginal cost of the 4th unit of output? My Notes Ask Your Teacher (a) Find parametric equations for the line through (1, 3, 4) that is perpendicular to the plane x-y + 2z 4, (Use the parameter t.) )13-12-4 (b) In what points does this line intersect the coordinate planes? xy-plane (x, y, z)-((-1,5,0)|x ) yz-plane (x, y, z)- xz-plane x, 9+ Need Help? Read it Talk to a Tutor Submit Answer Save Progress Practice Another Version Consider the hypothesis test H0: 1= 2 against H1: 1Image for Consider the hypothesis test H0: mu1= mu2 against H1:mu1mu2. Suppose that the sample sizes aren1 = 15 and n2 =2. Suppose that the sample sizes aren1 = 15 and n2 = 15, thatImage for Consider the hypothesis test H0: mu1= mu2 against H1:mu1mu2. Suppose that the sample sizes aren1 = 15 and n2 == 4.7 andImage for Consider the hypothesis test H0: mu1= mu2 against H1:mu1mu2. Suppose that the sample sizes aren1 = 15 and n2 == 7.8 and that s21 = 4 ands22 = 6.25. Assume that21 = 22 andthat the data are drawn from normal distributions. Use =0.05.(a) Test the hypothesis and find the P-value.(b) Explain how the test could be conducted with a confidenceinterval.(c) What is the power of the test in part (a) for a truedifference in means of 3?(d) Assuming equal sample sizes, what sample size should beused to obtain = 0.05 if the true difference in means is -2?Assume that = 0.05. Can you think of any south African words that have become part of standard English in this country in what situation could a party enforce strict performance? When a kitten is born it weighs 1. 5 pounds. After 3 weeks it weighs 3 pounds. When thekitten is 6 weeks old it weighs 7. 5 pounds. What percent weight gain did the kitten growover from the first weight? Crash Airlines provides the following fringe benefits to its employees. For each benefit, state whether or not an accounting entry would be needed at the end of the year to accrue the cost of the benefit. State your justification for each answer.1.Each employee earns two days of paid sick leave for each 160 hours he or she works for the company.2.Each employee is also permitted to fly free of charge on any Crash Airlines flight that is not fully booked with customers. The employee may take as many flights in the course of a year as he or she wishes. Choose the statement that gives the most accurate description of etiquette: a. The rules of etiquette make up a fundamental branch of morality. b. Compliance with the rules of etiquette is by-and-large sufficient for moral conduct. c. Etiquette refers to a special code of social behavior or courtesy. d. The rules of etiquette, with a few exceptions, are nearly all backed by statutory laws. e. Etiquette is largely responsible for the decline of American manufacturing.